
Asymptotic behaviour of fundamental cycle of periodic box–ball systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 7251

(http://iopscience.iop.org/0305-4470/36/26/303)

Download details:

IP Address: 171.66.16.86

The article was downloaded on 02/06/2010 at 16:19

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/26
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 7251–7268 PII: S0305-4470(03)60333-1

Asymptotic behaviour of fundamental cycle of
periodic box–ball systems

Jun Mada and Tetsuji Tokihiro

Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba,
Tokyo 153-8914, Japan

Received 3 March 2003
Published 18 June 2003
Online at stacks.iop.org/JPhysA/36/7251

Abstract
We investigate asymptotic behaviour of fundamental cycle of periodic box–
ball systems (PBBSs) when the system size N goes to infinity. According to
integrable nature of the PBBS, the trajectory is confined to qualitatively smaller
number of states than that of the total states. We prove that, although the
maximum fundamental cycle is of order of exp[

√
N ], almost all fundamental

cycle is less than exp[(log N)2].

PACS numbers: 02.30.Ik, 05.45.Yv, 05.65.+b

1. Introduction

The periodic box–ball system (PBBS) is a dynamical system of balls in a one-dimensional
array of boxes with periodic boundary condition [1, 2]. The PBBS is obtained from the
discrete Toda equation [3], which is a well-known integrable partial difference equation, with
a periodic boundary condition through a limiting procedure called ultradiscretization [4, 5].
Using inverse ultradiscretization, the initial value problem of PBBS is solvable by inverse
scattering transform [6]. Hence, the PBBS may be called an integrable dynamical system. On
the other hand, an important feature of an integrable dynamical system is that its trajectory
in the phase space is restricted to a low-dimensional subspace determined by the conserved
quantities [7]. In particular, it does not have ergodicity on the phase space determined by
the total energy (the energy surface). Accordingly, to see the qualitative difference between a
trajectory of an integrable dynamical system and that of a non-integrable system, one may take
the Poincaré section in the lower-dimensional plane. If we plot a two-dimensional Poincaré
section for an integrable system, its trajectory locates on lower-dimensional curves and is
quite different from that of non-integrable (or chaotic) systems. However, since the PBBS
is composed of a finite number of boxes and balls, it can only take on a finite number of
patterns. In other words, the phase space of the PBBS consists of only a finite number of
points. For dynamical systems with such phase spaces, the difference between integrable and
non-integrable systems cannot be clearly specified from the trajectory.
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Figure 1. Time evolution rule for PBBS.

Recently Yoshihara et al have obtained the formulae to determine the fundamental cycle,
i.e., the shortest period of the discrete periodic motion of the PBBS [8]. In the present paper,
we examine the integrability of the PBBS from its fundamental cycle based on their results.
Our point of view is quite naive—if a dynamical system has ergodicity in some sense, its
trajectory starting from a generic point will cover a significant portion of the phase space, and
the fundamental cycle T is of order of the volume (number of points) of the phase space. In
contrast, if a dynamical system has integrability in some sense, T will be qualitatively smaller.
We shall show that, in fact, a fundamental cycle of PBBS is much smaller than the volume of
its phase space.

In section 2, we briefly give the definition of PBBS and summarize the results obtained
in [8]. Using these results, we give upper and lower bounds of the fundamental cycle with
respect to the system size N in section 3. The distribution function for the number of states
with respect to the maximum length of solitons are evaluated in section 4 by means of a
generating function. We can conclude that almost all initial states have the fundamental cycle
less than exp[(log N)2] using the distribution function. Section 5 is devoted to concluding
remarks.

2. Periodic box–ball system and its fundamental cycle

First we briefly summarize the results in [8]. Let us consider a one-dimensional array of N
boxes. To be able to impose a periodic boundary condition, we assume that the Nth box is the
adjacent box to the first one. The box capacity is one for all the boxes, and each box is either
empty or filled with a ball at any time step. We denote the number of balls by M, such that
M � N

2 . The balls are moved according to a deterministic time evolution rule (figure 1).
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Figure 2. Correspondence of PBBS and Young diagram.

1. In each filled box, create a copy of the ball.
2. Move all the copies once according to the following rules.
3. Choose one of the copies and move it to the nearest empty box on the right of it.
4. Choose one of the remaining copies and move it to the nearest empty box on the right

of it.
5. Repeat the above procedure until all the copies have moved.
6. Delete all the original balls.

A PBBS has conserved quantities, which are characterized by a Young diagram with M boxes
(figure 2). The Young diagram is constructed as follows. We denote an empty box by ‘0’ and
a filled box by ‘1’. Then the PBBS is represented as a 0, 1 sequence in which the last entry
is regarded as adjacent to the first entry. Let p1 be the number of 10 pairs in the sequence. If
we eliminate these 10 pairs, we obtain a new 0, 1 sequence. We denote by p2 the number of
10 pairs in the new sequence. We repeat the above procedure until all the ‘1’s are eliminated
and obtain p2, p3, . . . , pl . Clearly p1 � p2 � · · · � pl and

∑l
i=1 pi = M . These {pi}li=1

are conserved in time evolution. Since {p1, p2, . . . , pl} is a weakly decreasing series of
positive integers, we can associate it with a Young diagram with pj boxes in the j th column
(j = 1, 2, . . . , l). Then the lengths of the rows are also weakly decreasing positive integers,
and we denote them

{L1, L1, . . . , L1,︸ ︷︷ ︸
n1

L2, L2, . . . , L2,︸ ︷︷ ︸
n2

. . . , Ls, Ls, . . . , Ls︸ ︷︷ ︸
ns

}

where L1 > L2 > · · · > Ls . The set {Lj , nj }sj=1 is an alternative expression of the conserved
quantities of the system. In the limit N → ∞, Lj means the length of the j th largest soliton
and nj is the number of solitons with length Lj .

The following two propositions are essential in our arguments. Let �0 := N − 2M =
N − ∑l

j=1 2pj = N − ∑s
j=1 2njLj , N0 := �0, Ls+1 := 0 and

�j := Lj − Lj+1 (j = 1, 2, . . . , s) (2.1)

Nj := �0 + 2n1(L1 − Lj+1) + 2n2(L2 − Lj+1) + · · · + 2nj (Lj − Lj+1)

= �0 +
j∑

k=1

2nk(Lk − Lj+1) (j = 1, 2, . . . , s). (2.2)

Then, for a fixed number of boxes N and conserved quantities {Lj , nj }, the number of possible
states of the PBBS �(N; {Lj , nj }) is given by the following formula.
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Proposition 2.1 (YYT).

�(N; {Lj , nj }) = N

�0

(
�0 + n1 − 1

n1

)(
N1 + n2 − 1

n2

)(
N2 + n3 − 1

n3

)
× · · · ×

(
Ns−1 + ns − 1

ns

)
.

(2.3)

Note that the formula (2.3) holds when some of the nj are equal to 0, i.e.,

�
(
N; {Lj , nj }sj=1

) = �
(
N; {i, ni}Mi=1

)
(2.4)

where ni = 0 if i /∈ {Lj }sj=1 and ni = nj if Lj = i.
The fundamental cycle T is given as

Proposition 2.2 (YYT). Let T̃ be defined as

T̃ := LCM

(
NsNs−1

�s�0
,
Ns−1Ns−2

�s−1�0
, . . . ,

N1N0

�1�0
, 1

)
(2.5)

where LCM(x, y) := 2max[x2,y2]3max[x3,y3]5max[x5,y5] · · · for x = 2x2 3x3 5x5 · · · and y =
2y2 3y3 5y5 · · · . Then T is a divisor of T̃ . In particular, when there is no internal symmetry
in the state T = T̃ .

The definition of internal symmetry in the above proposition is rather complicated and
we refer to the original paper [8]. However, for a given number of conserved quantities, we
can always construct initial states, which do not have any internal symmetry, in particular, if
∀i, ni = 1 the PBBS has no internal symmetry and T = T̃ .

3. Maximum value of the fundamental cycle

To take an appropriate limit, we fix the ball density ρ := M/N . The volume of the phase
space V (N; ρ) is

V (N; ρ) =
(

N

M

)
∼ 1√

2πρ(1 − ρ)N
RN (R := (1 − ρ)ρ−1ρ−ρ). (3.1)

Thus the volume of the phase space increases exponentially with respect to the system size
N. On the other hand, for a given number of balls M, there are PM different Young diagrams
which correspond to conserved quantities. Here PM is the number of partitions of M. The
following estimation of PM is well known [9].

PM = exp[π
√

2M/3]

4
√

3M

(
1 + O

(
log M

M1/4

))
. (3.2)

Since M = ρN , we have PM ∼ exp[π
√

2ρ/3
√

N ]/(4
√

3ρN). The restricted phase space
determined by the conserved quantities has the volume V (N; ρ)/PM on average. This average
volume still grows exponentially with respect to the system size. Since we can only say that a
fundamental cycle of the PBBS is at most less than the volume of the subspace determined by
these conserved quantities, we need more detailed analysis to know the asymptotic behaviour
of the fundamental cycle of PBBS.

In this section, we estimate the maximum fundamental cycle Tmax := max[T ]. From
(2.5) T̃ is evaluated as

T̃ � LCM(NsNs−1, Ns−1Ns−2, . . . , N2N1)

�
s∏

j=1

Nj < (Ns)
s = Ns.
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Since

M =
s∑

j=1

njLj �
s∑

j=1

j = s(s + 1)

2

we find s <
√

2M and

Ns = es log N < e
√

2ρN log N.

Thus we have an upper bound

Tmax < e
√

2ρ
√

N log N. (3.3)

Next we estimate a lower bound of Tmax. First we assume N is an even integer. Since
�0 = N − 2M, �0 is also an even integer. Let k and s be the integers which are determined
uniquely by

k(k − 1) � �0 � k(k + 1) − 2 (3.4)

(k + s − 1)(k + s) � N < (k + s)(k + s + 1). (3.5)

Then we consider an initial state which consists of s kinds of solitons with length
1, 2, . . . , s (�j = 1∀j � 1). From (3.4) and (3.5), we may take n1 = k(k+1)−�0

2 , n2 =
�0−k(k−1)+2

2 , ns = N−(k+s)(k+s−1)+2
2 and nj = 1 (3 � j � s − 1). By the definition of Nj (2.2),

we have

N1 = k(k + 1) N2 = (k + 1)(k + 2) N3 = (k + 2)(k + 3), . . . ,

Ns−1 = (k + s − 2)(k + s − 1) (Ns ≡ N).

As was mentioned in the previous section, we can suppose that there is no internal symmetry
in this state and its fundamental cycle T (k) is estimated as

T (k) = LCM

(
NsNs−1

�s�0
,
Ns−1Ns−2

�s−1�0
, . . . ,

N2N1

�1�0

)

� 1

�0
LCM(Ns−1Ns−2, Ns−2Ns−3, . . . , N2N1)

= 1

�0
LCM((k + s − 1)(k + s − 2)2(k + s − 3), . . . , (k + 3)(k + 2)2(k + 1), (k + 2)(k + 1)2k)

� 1

�0
LCM((k + s − 2)2, (k + s − 3)2, . . . , (k + 1)2)

= 1

�0
(LCM((k + s − 2), (k + s − 3), . . . , (k + 1)))2. (3.6)

We define

L(n,m) := LCM(n, n − 1, . . . , m + 2,m + 1) (3.7)

for positive integer n and m (n > m), then the right-hand side of (3.6) is rewritten as
L(k + s − 2, k)2. From the identities LCM(A,B) = AB/GCD(A,B) and L(n, 1) =
LCM(L(n,m), L(m, 1)), we know

L(n,m) = L(n, 1)
GCD(L(n,m), L(m, 1))

L(m, 1)
.

Since L(n − m, 1) is a divisor of L(n,m), GCD(L(n,m), L(m, 1)) � GCD(L(n − m, 1),

L(m, 1)) � min[L(n − m, 1), L(m, 1)] and L(n,m) satisfies

L(n,m) � L(n, 1) min[L(n − m, 1), L(m, 1)]

L(m, 1)
.
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If we introduce the Chebyshev function ψ(n) [9]

ψ(n) :=
∑

pj �n,p is a prime, j ∈ Z+

log p (3.8)

L(n, 1) = LCM(n, n − 1, n − 2, . . . , 2) is expressed as

L(n, 1) = exp[ψ(n)] (3.9)

and we obtain the inequality

L(n,m) � exp[ψ(n) − max[ψ(m) − ψ(n − m), 0]]. (3.10)

The asymptotic formulae for the Chebyshev function ψ(n) have been extensively investigated
since the nineteenth century [10]. For example, the following lemma holds [11]:

Lemma 3.1 (Rooser–Schoenfeld). If n � 108 then

|ψ(n) − n| < 0.025
n

log n
. (3.11)

Thus we have rather a rough estimation

L(n,m) > exp

[
(n − max[2m − n, 0])

(
1 − c

log n

)]
for n,m � 1 (3.12)

where c is a small positive number. (From lemma 3.1, we can take c ∼ 0.1 for N � 1016.)
Using this inequality and (3.6), the fundamental cycle T (k) is estimated as

T (k) > exp

[
2((k + s − 2) − max[k − s + 2, 0])

(
1 − c

log(k + s − 2)

)]

for k � 1. From (3.4) and (3.5), we have
√

N − 1 < k + s <
√

N + 1 and
√

�0 − 1 <

k <
√

�0 + 1. Therefore, we obtain

T (k) > exp

[
2(1 − max[

√
2 − 4ρ − 1, 0])

√
N

(
1 − c

log N

)]
for N � 1. (3.13)

In the case N is an odd integer, �0 is also an odd integer and we determine k (odd number)
and s by

k(k − 2) � �0 � k(k + 2) − 2 (3.14)

(k + 2s − 2)(k + 2s) � N < (k + 2s)(k + 2s + 2). (3.15)

Then we again consider an initial state which consists of s kinds of solitons with length
1, 2, . . . , s (�j = 1∀j � 1). From (3.14) and (3.15), we may take n1 = k(k+2)−�0

2 , n2 =
�0−k(k−2)+8

2 , ns = N−(k+2s)(k+2s−2)+8
2 and nj = 4 (3 � j � s − 1). For Nj , we have

N1 = k(k + 2) N2 = (k + 2)(k + 4) N3 = (k + 4)(k + 6), . . . ,

Ns−1 = (k + 2s − 4)(k + 2s − 2) (Ns ≡ N).
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Figure 3. An example of a triangular Young diagram.

The fundamental cycle T ′(k) is estimated in a similar manner to the even integer case as

T ′(k) � 1

�0
(LCM((k + 2s − 2), (k + 2s − 4), . . . , (k + 2)))2. (3.16)

Thus we can again use the asymptotic formulae for the Chebyshev function and obtain

T ′(k) > exp

[
2(1 − max[

√
2 − 4ρ − 1, 0])

√
N

(
1 − c

log N

)]
for N � 1. (3.17)

Therefore, we have proved the following theorem:

Theorem 3.1. For N � 1 and M = ρN (0 < ρ < 1/2), the maximum value of the
fundamental cycle Tmax ≡ Tmax(N; ρ) satisfies

exp

[
2(1 − max[

√
2 − 4ρ − 1, 0])

√
N

(
1 − c

log N

)]
< Tmax < exp[

√
2ρ

√
N log N ].

(3.18)

Here c is a positive integer and c ∼ 0.1 for N � 1016.

From theorem 3.1, we find that log T (N; ρ) �
√

N . On the other hand log V (N; ρ) ∼ N ,
and we may be able to conclude that the PBBS does not have the ergodic property in the sense
given in section 1.

Although formula (3.18) is a rather rough estimation for the maximum fundamental cycle,
it seems a difficult problem to obtain a sharper bound for Tmax analytically because of its number
theoretical aspects. From the above arguments and numerical calculations, however, we expect
that the fundamental cycle of the initial state, which has the conserved quantities determined
by the triangular Young diagram (see figure 3) for the partition (s, s − 1, s − 2, . . . , 2, 1),
is almost of the order of Tmax. In this case, all the solitons have different lengths and the
fundamental cycle is given as

T (t)(N, ρ) = LCM

(
NsNs−1

�0
,
Ns−1Ns−2

�0
, . . . ,

N1N0

�0
, 1

)
(3.19)

where Nk = �0 + k(k + 1) and �0 = N − 2M = (ρ−1 − 2)s(s + 1)/2.
The number of possible states for the triangular Young diagram �(t)(N, ρ) is given as

�(t)(N, ρ) =
s∏

k=1

(�0 + k(k + 1)) (3.20)
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where M = ρN = s(s + 1)/2 and �0 = (1 − 2ρ)N . By putting γ := �0/s
2, we have

�(t)(N, ρ) = s2s

s∏
k=1

[
γ +

(
k

s

) (
k + 1

s

)]

= s2s exp

[
s∑

k=1

log

[
γ +

(
k

s

) (
k + 1

s

)]]


 s2s exp

[
s

∫ 1

0
log(γ + x2) dx

]

= s2s exp

[
s

(
log(1 + γ ) − 2 + 2

√
γ arctan

1√
γ

)]
.

Since γ = −1 + 1/(2ρ), by putting α(ρ) := log(1 + γ ) − 2 + 2
√

γ arctan 1√
γ

+ log(2ρ), we
have

�(t)(N, ρ) 
 exp[
√

2ρ
√

N(log N + α(ρ))]. (3.21)

Thus �(t)(N, ρ) ∼ e(
√

2ρ)
√

N log N and

log �(t)(N, ρ)

log V (N, ρ)
∼ log N√

N
.

Hence the number of possible states for the triangular Young diagram is much smaller than
the volume of the phase space. Figure 4 shows the ratio T (t)(N, ρ)/�(t)(N, ρ) obtained
numerically. The results show that the fundamental cycle T (t) is much smaller than the
number of states �(t). Although the results are not enough to estimate the asymptotic value of
T (t), we see in this example that, even if we restrict ourselves to the phase space determined
by the conserved quantities, the trajectory does not have ergodicity in the sense that it will
never visit most of the states with the same conserved quantities.

4. Asymptotic behaviour of fundamental cycle for generic initial states

In the preceding section, we have proved that log Tmax ∼ √
N . For a generic initial state,

however, we expect that its fundamental a cycle is qualitatively much smaller. For example,
initial states correspond to a rectangular Young diagram (figure 5). In this case, its fundamental
cycle is easily obtained as a divisor of T̃ (r)(N):

T̃ (r)(N) = LCM

(
N

L1
, 1

)
� N.

Hence the fundamental cycle less than or equal to the system size N. In the case of
figure 5(b) (L1 = 1, n1 = M), the number of possible states �(rb)(N, ρ) for the rectangular
Young diagram (b) is given as

�(rb)(N, ρ) = N

N − 2M

(
N − M − 1

M

)

∼ 1√
2πρ(1 − ρ)(1 − 2ρ)N

R̃N (R̃ := (1 − ρ)1−ρρ−ρ(1 − 2ρ)2ρ−1).
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Figure 4. Results of numerically calculated log[T (t)(N, ρ)/�(t)(N, ρ)].

Figure 5. Rectangular Young diagram.

Therefore, the number of these initial states grows exponentially with respect to N, while that
of the initial states corresponding to triangular diagrams grows much more slowly like (3.21).
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To examine the asymptotic behaviour for a generic initial state, we define the generating
function as

F(N,K, �0; x) :=

 K∏

j=1

∞∑
nj =0


 �(N; {j, nj })x

∑K
i=1 ini

= N

�0


 K∏

j=1

∞∑
nj =0


 (

�0 + nK − 1

nK

)

×
(

�0 + 2nK + nK−1 − 1

nK−1

)(
�0 + 4nK + 2nK−1 + nK−2 − 1

nK−2

)

× · · · ×
(

�0 +
(∑K

i=2 2(i − 1)ni

)
+ n1 − 1

n1

)
x

∑K
i=1 ini . (4.1)

From proposition 2.1 and equation (2.4), we find

Proposition 4.1. Let N,M and �0 be the number of boxes of a PBBS, the number of balls
and �0 = N − 2M , respectively. Then the coefficient of xM of F(N,K, �0; x) is the number
of initial states whose largest solitons have length less than or equal to K.

The function F(N,K, �0; x) has the following expression:

Proposition 4.2.

F(N,K, �0; x) = N

�0
(YK(x))�0 (4.2)

where YK(x) is recursively defined as

X1(x) := 1

1 − x

Yk(x) := X1(x)X2(x) · · · Xk(x) (k = 1, 2, . . .)

Xk(x) := 1

1 − {Y1(x)Y2(x) · · · Yk−1(x)}2xk
(k = 1, 2, . . .).

(4.3)

Proof. From the identity
∞∑

n=0

(
a + n − 1

n

)
xn = 1

(1 − x)a
(4.4)

we have

F(N,K, �0; x) = N

�0

∑
nj �0,j� =1

1

(1 − x)�0+2(K−1)nK +···+2n2

(
�0 + nK − 1

nK

)

× · · · ×
(

�0 + 2(K − 2)nK + · · · + 2n3 + n2 − 1

n2

)
(xK)nK · · · (x2)n2

= N

�0

∑
nj �0,j� =1

(X1(x))�0+2(K−1)nK +···+4n3

×
(

�0 + nK − 1

nK

)
· · ·

(
�0 + 2(K − 2)nK + · · · + 2n3 + n2 − 1

n2

)
× (xK)nK · · · (x3)n3((X1(x))2x2)n2
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= N

�0

∑
nj �0,j� =1

(X1(x))�0+2(K−1)nK +···+4n3

×
(

�0 + nK − 1

nK

)
· · ·

(
�0 + 2(K − 2)nK + · · · + 2n3 + n2 − 1

n2

)
× (xK)nK · · · (x3)n3((Y1(x))2x2)n2 . (4.5)

Repeated use of (4.4) and the definition of Xk(x) and Yk(x) yields

F(N,K, �0; x) = N

�0

∑
nj �0,j� =1,2

(X1(x))�0+2(K−1)nK +···+4n3

× 1

(1 − (Y1(x))2x2)�0+2(K−2)nK +···+2n3

(
�0 + nK − 1

nK

)

× · · · ×
(

�0 + 2(K − 3)nK + · · · + 2n4 + n3 − 1

n3

)
(xK)nK · · · (x3)n3

= N

�0

∑
nj �0,j� =1,2

(X1(x))�0+2(K−1)nK +···+8n4(X2(x))�0+2(K−2)nK +···+4n4

×
(

�0 + nK − 1

nK

)
· · ·

(
�0 + 2(K − 3)nK + · · · + 2n4 + n3 − 1

n3

)
× (xK)nK · · · (x3)n3{(X1(x)X1(x)X2(x))2x3}n3

= N

�0

∑
nj �0,j� =1,2

(X1(x))�0+2(K−1)nK +···+8n4(X2(x))�0+2(K−2)nK +···+4n4

×
(

�0 + nK − 1

nK

)
· · ·

(
�0 + 2(K − 3)nK + · · · + 2n4 + n3 − 1

n3

)
× (xK)nK · · · (x3)n3{(Y1(x)Y2(x))2x3}n3

= · · ·
= N

�0
(X1(x))�0(X2(x))�0 · · · (XK(x))�0

= N

�0
(YK(x))�0 .

�

Now we introduce

ak(x) :=
[ k+1

2 ]∑
j=0

(
k + 1 − j

j

)
(−1)j xj (k � −1, k ∈ Z). (4.6)

For polynomials ak(x), we have the following lemma.

Lemma 4.1. Let ak(x) be as above, then

ak+1(x) = ak(x) − xak−1(x) (k = 0, 1, 2, . . .) (4.7)

ak+1(x)ak−1(x) = ak(x)2 − xk+1 (k = 0, 1, 2, . . .) (4.8)

ak(x) = α(x)k+2 − β(x)k+2

α(x) − β(x)
(k = 0, 1, 2, . . .) (4.9)

where α(x) and β(x) are two distinct roots of the quadratic equation

t2 − t + x = 0.
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Note that α(x) and β(x) are explicitly given as

α(x) = 1 +
√

1 − 4x

2
β(x) = 1 − √

1 − 4x

2
(4.10)

and α(x)β(x) = x, α(x) + β(x) = 1.

Proposition 4.3.

Yk(x) = ak−1(x)

ak(x)
(4.11)

= α(x)k+1 − β(x)k+1

α(x)k+2 − β(x)k+2
(k = 1, 2, 3, . . .). (4.12)

Proof. Since (4.12) is easily seen from (4.9) and (4.11), we prove (4.11) by induction.
Since a0(x) = 1, a1(x) = 1 − x, we have Y1(x) = a0(x)

a1(x)
. Suppose that (4.11) holds for

k = 1, 2, . . . , n. By the definition of Xk(x) (4.3), we have

Xn+1(x) = 1

1 − {Y1(x)Y2(x) · · · Yn(x)}2xn+1

= 1

1 − (
a0(x)

a1(x)

a1(x)

a2(x)
· · · an−1(x)

an(x)

)2
xn+1

= 1

1 − (
a0(x)

an(x)

)2
xn+1

= (an(x))2

(an(x))2 − xn+1
. (4.13)

However, from (4.8),

Xn+1(x) = (an(x))2

(an+1(x)an−1(x))
.

Since Yn+1(x) = Xn+1(x)Yn(x), (4.11) holds for k = n + 1. Hence (4.11) holds for
k = 1, 2, 3, . . . by mathematical induction. �

From propositions 4.2 and 4.3, we have an explicit form of the generating function
F(N,K, �0; x). Then the coefficient of xM of F(N,K, �0; x), f (N,K;M), is given by the
contour integral

f (N,K;M) = 1

2π i

∮
|z|=ε�1

F(N,K, �0; z)

zM+1
dz. (4.14)

The asymptotic behaviour of the right-hand side of (4.14) may be estimated with, for example,
the method of steepest decent. However, (4.14) is still complicated and we shall try to obtain
a simpler expression.

The following lemma is easily obtained by induction.

Lemma 4.2. (
1

α(x)

)m

=
∞∑

r=0

m(2r + m − 1)!

(r + m)!r!
xr (m = 1, 2, . . .). (4.15)
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Then we obtain an explicit formula for f (N,K;M) defined in proposition 4.1 as

Proposition 4.4.

f (N,K;M) := N

�0

�0∑
j=0,(K+1)j+(K+2)i�M

∞∑
i=0

(
�0

j

)(
�0 + i − 1

i

)
(−1)j

× (�0 + 2(K + 1)j + 2(K + 2)i)(2M + �0 − 1)!

(M + �0 + (K + 1)j + (K + 2)i)!(M − (K + 1)j − (K + 2)i)!
(4.16)

where �0 = N − 2M .

Proof. From (4.12), we have

Yk(x) = 1

α(x)

1 − (
β(x)

α(x)

)k+1

1 − (
β(x)

α(x)

)k+2 . (4.17)

Using (4.10), we know

Y (x) := lim
k→+∞

Yk(x) = 1

α(x)

β(x)

α(x)
= x(Y (x))2.

Thus we find

(Yk(x))�0 = (Y (x))�0

(
1 − (x(Y (x))2)k+1

1 − (x(Y (x))2)k+2

)�0

=
�0∑

j=0

∞∑
i=0

(
�0

j

)(
�0 + i − 1

i

)
(−1)j x(k+1)j+(k+2)i (Y (x))�0+2(k+1)j+2(k+2)i . (4.18)

Since Y (x) = 1
α(x)

, using lemma 4.2, we obtain a series expansion of (Yk(x))�0 in terms of x
which gives (4.16). �

Equation (4.16) is rewritten as

f (N,K;M) = 1

�0

∞∑
i=0,(K+1)j+(K+2)i�M

(
�0 + i − 1

i

)

×
�0∑

j=0

(−1)j
(

�0

j

)(
2M + �0

M − (K + 1)j − (K + 2)i

)
(�0 + 2(K + 1)j + 2(K + 2)i).

Noticing the facts
�0∑

j=0

(−1)j
(

�0

j

)(
2M ′ + �′

0

M ′ − (k + 1)j

)
= (1 − xk+1)�0(1 + x)2M ′+�′

0 |xM′

�0∑
j=0

(−1)j
(

�0

j

)(
2M ′ + �′

0

M ′ − (k + 1)j

)
j = −�0x

k+1(1 − xk+1)�0−1(1 + x)2M ′+�′
0 |xM′

where f (x)|xM′ denotes the coefficient of xM ′
in the power series expansion of a function

f (x), we find
�0∑

j=0

(−1)j
(

�0

j

)(
2M ′ + �′

0

M ′ − (k + 1)j

)
(�′

0 + 2(k + 1)j)

= (�′
0(1 − xk+1) − 2(k + 1)�0x

k+1)(1 − xk+1)�0−1(1 + x)2M ′+�′
0 |xM′ .
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By taking �′
0 = �0 + 2(k + 2)i and M ′ = M − 2(k + 1)i, we have the following formula in a

similar manner.
∞∑
i=0

(
�0 + i − 1

i

) �0∑
j=0

(−1)j
(

�0

j

)(
2M + �0

M − (k + 1)j − (k + 2)i

)
(�0 + 2(k + 1)j + 2(k + 2)i)

= (1 − xk+1)�0−1(1 + x)2M+�0

∞∑
i=0

(
�0 + i − 1

i

)
x(k+2)i

×(2(k + 2)(1 − xk+1)i + �0(1 − (2k + 3)xk+1))|xM

= �0(1 − xk+1)�0(1 + x)2M+�0

(1 − xk+2)�0

×
(

1 − (2k + 2)
xk+1

1 − xk+1
+ (2k + 4)

xk+2

1 − xk+2

)∣∣∣∣
xM

. (4.19)

Hence we have

f (N,K; �0) = (1 + x)2M+�0

(
1 − xK+1

1 − xK+2

)�0

×
(

1 − (2K + 2)
xK+1

1 − xK+1
+ (2K + 4)

xK+2

1 − xK+2

)∣∣∣∣
xM

. (4.20)

Since

d

dx

(
1 − xk+1

1 − xk+2

)
= 1 − xk+1

x(1 − xk+2)

(
− (k + 1)xk+1

1 − xk+1
+

(k + 2)xk+2

1 − xk+2

)
the Cauchy integral is rewritten as∮

C

dz

zM+1
(1 + z)2M+�0

(
1 − zk+1

1 − zk+2

)�0 (
1 − (2k + 2)

zk+1

1 − zk+1
+ (2k + 4)

zk+2

1 − zk+2

)

=
∮

C

dz

zM+1
(1 + z)2M+�0

(
1 − zk+1

1 − zk+2

)�0

+
∮

C

2 dz

zM
(1 + z)2M+�0

(
1 − zk+1

1 − zk+2

)�0−1
d

dz

(
1 − zk+1

1 − zk+2

)

=
∮

C

dz

zM+1
(1 + z)2M+�0

(
1 − zk+1

1 − zk+2

)�0

+
1

�0

∮
C

2 dz

zM
(1 + z)2M+�0

d

dz

((
1 − zk+1

1 − zk+2

)�0
)

=
∮

C

dz

zM+1
(1 + z)2M+�0

(
1 − zk+1

1 − zk+2

)�0

− 1

�0

∮
C

dz

(
1 − zk+1

1 − zk+2

)�0 d

dz

(
2(1 + z)2M+�0

zM

)

= �0 + 2M

�0

∮
C

dz

zM+1

(
1 − zk+1

1 − zk+2

)�0

(1 + z)2M+�0

− 2(2M + �0)

�0

∮
C

dz

zM

(
1 − zk+1

1 − zk+2

)�0

(1 + z)2M+�0−1
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=
∮

C

dz

zM+1

(
�0 + 2M

�0
− 2(2M + �0)

�0

z

1 + z

) (
1 − zk+1

1 − zk+2

)�0

(1 + z)2M+�0

= �0 + 2M

�0

∮
C

dz

zM+1

(
1 − zk+1

1 − zk+2

)�0

(1 + z)2M+�0−1(1 − z). (4.21)

Therefore we obtain

Theorem 4.1. The coefficient f (N,K;M) is given by the Cauchy integral

f (N,K;M) = N

2π i�0

∮
C

dz

zM+1

(
1 − zK+1

1 − zK+2

)�0

(1 + z)2M+�0−1(1 − z). (4.22)

Here C denotes the contour |z| = x0(<1).

We evaluate (4.22) by the method of steepest decent. Let us define

f (ζ ) :=
(

1 − e(K+1)ζ

1 − e(K+2)ζ

)�0

(1 + eζ )2M+�0−1(1 − eζ ).

Then, by changing variable z = eζ ,

1

2π i

∮
C

dz

zM+1

(
1 − zK+1

1 − zK+2

)�0

(1 + z)2M+�0−1(1 − z)

= 1

2π

∫ π

−π

dv exp[log f (ζ ) − Mζ ] (ζ = u0 + iv, eu0 = x0).

We determine u0 so that the function exp[log f (ζ ) − Mζ ] has the saddle point at ζ = u0 as

[log f (u0)]
′ − M = 0 (4.23)

[log f (u0)]
′′ > 0. (4.24)

Equation (4.23) is rewritten as

�0

(−(K + 1) e(K+1)u0

1 − e(K+1)u0
− −(K + 2) e(K+2)u0

1 − e(K+2)u0

)
+ (2M + �0)

eu0

1 + eu0
− 2 eu0

1 − e2u0
= M.

Since M = ρN and �0 = N − 2M = (1 − 2ρ)N , we have

(1 − 2ρ)N

(−(K + 1) e(K+1)u0

1 − e(K+1)u0
− −(K + 2) e(K+2)u0

1 − e(K+2)u0

)
+ N

eu0

1 + eu0
− 2 eu0

1 − e2u0
= ρN.

For N � 1 and u0 < 0, the third term in the left-hand side of the above equation is negligible.
(There is a solution to (4.23) for u0 ∼ 1 − 0, but it does not satisfy (4.24).) If we put
ρ =: t0

1+t0
(0 < t0 < 1) and eu0 = t0 + εK , we find, at least for sufficiently large K, that there is

a unique u0 which satisfies (4.23) and (4.24) and

εK = (
1 − t2

0

) (
(K + 1)tK+1

0 − (K + 2)tK+2
0

) [
1 + O

(
tK+1
0

)]
.
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Since log f (ζ ) is written as log f (ζ ) = N log f̃ (ζ ) where f̃ (ζ ) depends on N as far as N � 1
and Re[ζ ] < 0, standard arguments give the asymptotic formula as

1

2π

∫ π

−π

elog f (ζ )−Mζ dv 
 1

2π

∫ π

−π

e(log f (u0)−Mu0)− 1
2 (log f (u0))

′′v2
dv


 1

2π
e(log f (u0)−Mu0)

∫ ∞

−∞
e− 1

2 (log f (u0))
′′v2

dv

= 1

2π

√
2π

(log f (u0))′′
e(log f (u0)−Mu0)

∼ 1√
2π(log f (u0))′′

(
1 − t k+1

0

1 − t k+2
0

)�0

(1 + t0)
2M+�0−1(1 − t0)

1

tM0
. (4.25)

Here (log f (u0))
′′ ∼ Nt0/(1 + t0)

2 (N � 1). Hence we have proved

Theorem 4.2. For sufficiently large K,

f (N,K;M) ∼ N

�0
√

2πt0N
(1 − t0)

(1 + t0)
N

tM0

(
1 − tK+1

0

1 − tK+2
0

)�0

(N → +∞) (4.26)

where �0 = N − 2M,M = Nρ and ρ = t0
1+t0

(0 < t0 < 1).

Now we discuss the asymptotic behaviour of the fundamental cycle for generic initial
states utilizing theorem 4.2. We define the normalized integrated density of states IN;ρ(K)

and its derivative PN;ρ(K) as

IN;ρ(K) := f (N,K;M)

V (N; ρ)
(M ≡ ρN) (4.27)

PN;ρ(K) := IN;ρ(K) − IN;ρ(K − 1). (4.28)

(Note that f (N,K;M) = V (N; ρ) for (K � M) is easily confirmed from (4.16).) The
function PN;ρ(K) is a normalized density of states the largest solitons of which have length
K. From (3.1) and (4.26), we have

IN;ρ(K) 

(

1 − tK+1
0

1 − tK+2
0

)�0

(4.29)

PN;ρ(K) 
 −�0(1 − t0)(log t0)
tK0(

1 − tK0
) (

1 − tK+1
0

) (
1 − tK0

1 − tK+1
0

)�0

(4.30)

for K,N � 1. The function PN;ρ(K) has one sharp peak at

Kmax 
 log(�0(1 − t0))

− log t0


 log N

− log t0
. (4.31)

To know the width of this peak, we define K±(ε) for a given small positive number (0 < ε � 1)

as

IN;ρ(K−) = ε IN;ρ(K+) = 1 − ε. (4.32)
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Precisely speaking, K− (K+) ∈ Z+ is the integer that minimizes the value |IN;ρ(K) − ε|
(|IN;ρ(K) − (1 − ε)|). From (4.29), they are evaluated as

K−(ε) 
 log(�0(1 − t0))

−log t0
− log(−log ε)

−log t0


 Kmax − log(−log ε)

−log t0
(4.33)

K+(ε) 
 log(�0(1 − t0))

−log t0
+

−log(−log(1 − ε))

−log t0


 Kmax +
−log(−log(1 − ε))

−log t0
. (4.34)

Thus the width is very narrow—even for ε = 1/N , K+ − K− ∼ log N . Therefore, we
found that most states have the largest soliton whose length is of the order of log N

− log t0
.

Let VK(N; ρ) be the number of initial states the largest solitons of which have length K.
From the definition of K+(ε),

VK+(ε)(N; ρ)

V (N; ρ)
= 1 − ε. (4.35)

On the other hand, the fundamental cycle of states which consist of solitons which have length
K or less satisfies

T < NK. (4.36)

From (4.31), ∃C ∈ R+ such that

K+(ε) � log N

−log t0
+ C

−log ε

−log t0
. (4.37)

Then (4.36) yields

T < exp[K+(ε) log N ] � exp

[
(log N)2

−log t0

(
1 + C

−log ε

log N

)]
. (4.38)

Let δ be an arbitrary positive number. For ∀ε > 0, we denote by V̄δ(N; ρ) the number
of fundamental cycles which does not exceed exp

[
(1+δ)(log N)2

− log t0

]
. Then, from (4.37), for any

positive integer N which satisfies

δ log N > −C log ε

we have

K+ <
log N

−log t0
(1 + δ).

Therefore, for arbitrary ε > 0, if N > exp[−(C log ε)/δ], we have

1 − ε � V̄δ(N; ρ)

V (N; ρ)
< 1.

In conclusion, we have proved

Theorem 4.3. Let V̄δ(N; ρ) be the number of initial states which have a fundamental cycle
less than exp

[
(1+δ)(log N)2

−log t0

]
. Then, for ∀δ > 0,

lim
N→∞

V̄δ(N; ρ)

V (N; ρ)
= 1. (4.39)
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5. Concluding remarks

We have investigated the integrability of PBBS in terms of the asymptotic behaviour of its
fundamental cycles. As a dynamical system, PBBS is shown to have no ergodicity in the
sense that a trajectory does not visit most of the states in the phase space. Although the
maximum fundamental cycle Tmax � e

√
N (theorem 3.1), a generic state has fundamental

cycle T � e(log N)2
(theorem 4.3). To obtain a sharper estimation, we may have to invoke some

number theoretical techniques, which is a problem we wish to address in the future.
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